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1 QUAKEWORX Interface

The users need to provide a single JSON parameter file to specify simulation geometry, initial
damage strip, material properties, initial boundary conditions. Then QUAKEWORX will generate
the mesh, run static solve and dynamic solve, user will be able to access the solution .e file for
postprocessing (e.g. paraview). The JSON file is shown as follows:

1 {
2 "_comments": {
3 "##Geometry Parameters##": {
4 "xmin": "Minimum X coordinate for the domain (m)",
5 "xmax": "Maximum X coordinate for the domain (m)",
6 "ymin": "Minimum Y coordinate for the domain (m)",
7 "ymax": "Maximum Y coordinate for the domain (m)",
8 "zmin": "Minimum Z coordinate for the domain (m)",
9 "zmax": "Maximum Z coordinate for the domain (m)",

10 "lc": "Mesh size at far boundary (m)",
11 "lc_fault": "Mesh size at near fault (m)"
12 },
13 "##Material Parameters##": {
14 "lambda_o": "Lame Constant \lambda (Pa)",
15 "shear_modulus_o": "Shear Modulus \mu (Pa)",
16 "rho": "Density \rho (kg/m^3)"
17 },
18 "##Continuum Damage-Breakage Model Parameters##": {
19 "xi_0": "Strain invariant ratio at onset of damage \xi_0",
20 "xi_d": "Strain invariant ratio at onset of breakage \xi_d",
21 "Cd_constant": "Damage accumulation rate C_d (1/s)",
22 "CdCb_multiplier": "Breakage accumulation rate multiplier Cm (C_B (1/s

) = Cm * C_d)",
23 "CBH_constant": "Breakage healing rate C_BH (1/s)",
24 "C_1": "Damage healing rate C_1 (1/s)",
25 "C_2": "Damage healing rate C_2 (1/s)",
26 "beta_width": "Width of transitional region \beta",
27 "C_g": "Compliance of fluidity of the fine grain material C_g (1/(Pa s

))",
28 "m1": "Coefficient of power law index m_1",
29 "m2": "Coefficient of power law index m_2",
30 "chi": "Ratio of two energy states \chi"
31 },
32 "##Initial Damage Parameters##": {
33 "nucl_center_x": "Nucleation center x coordinate (m)",
34 "nucl_center_y": "Nucleation center y coordinate (m)",
35 "nucl_center_z": "Nucleation center z coordinate (m)",
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36 "len_fault_strike": "Length of initial damage strip along strike
direction (m)",

37 "len_fault_dip": "Length of initial damage strip along dip direction (
m)",

38 "len_fault_normal": "Length of initial damage strip along normal
direction (m)",

39 "nucl_distance": "Length of nucleation patch along strike/dip
direction (m)",

40 "nucl_thickness": "Length of nucleation patch along normal direction (
m)",

41 "nucl_damage": "Value of initial damage strip",
42 "e_damage": "Value of additional nucleation damage",
43 "e_sigma": "Value of initial damage exponential decay",
44 "duration": "Simulation time (s)"
45 },
46 "##Boundary Condition##": {
47 "normal_traction_x": "Normal boundary traction along x direction (Pa)"

,
48 "normal_traction_z": "Normal boundary traction along z direction (Pa)"

,
49 "normal_traction_y": "Normal boundary traction along y direction (Pa)"

,
50 "shear_traction": "Shear boundary traction along x-z direction (Pa)"
51 },
52 "##Simulation Parameters##": {
53 "dt": "Simulation time step (s)",
54 "end_time": "Total simulation time (s)",
55 "time_step_interval": "Result saved time interval"
56 }
57 },
58 "xmin": -10000,
59 "xmax": 10000,
60 "ymin": -10000,
61 "ymax": 10000,
62 "zmin": -10000,
63 "zmax": 10000,
64 "lc": 5000,
65 "lc_fault": 100,
66 "lambda_o": 3e10,
67 "shear_modulus_o": 3e10,
68 "rho": 2700,
69 "xi_0": -0.8,
70 "xi_d": -0.9,
71 "Cd_constant": 1e4,
72 "CdCb_multiplier": 1000,
73 "CBH_constant": 1e4,
74 "C_1": 300,
75 "C_2": 0.05,
76 "beta_width": 0.03,
77 "C_g": 1e-10,
78 "m1": 10,
79 "m2": 1,
80 "chi": 0.8,
81 "nucl_center_x": 0,
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82 "nucl_center_y": -5000,
83 "nucl_center_z": 0,
84 "len_fault_strike": 5000,
85 "len_fault_dip": 5000,
86 "len_fault_normal": 1000,
87 "nucl_distance": 400,
88 "nucl_thickness": 200,
89 "nucl_damage": 0.7,
90 "e_damage": 0.3,
91 "e_sigma": 250,
92 "duration": 0.1,
93 "normal_traction_x": 135e6,
94 "normal_traction_z": 120e6,
95 "normal_traction_y": 127.5e6,
96 "shear_traction": 55e6,
97 "dt": 1e-4,
98 "end_time": 50.0,
99 "time_step_interval": 1000

100 }

Most of the parameter explanations can be found in the above JSON file, for geometry setup
and initial damage profile, a sketch is given as follows:

Figure 1: Geometry and Initial Damage Profile Parameter Sketch. (1) The initial damage
profile assumes constant damage value within nucl_thickness along normal direction, and
exponentially decay along normal direction given initial damage Do = nucl_damage and
e_sigma, the additional damage e_damage will be applied on the patch in the center of the
fault, with its length nucl_distance and thickness nucl_thickness.
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2 Numerical Examples

2.1 Buried Fault

2.1.1 Geometry

The geometry, initial damage and boundary loading setup is given in Figure 2. The parameter
table is given in Figure 3. The results of breakage evolution time snapshots are given in the
Figure 4.

Figure 2: Problem Setup of DynamicCDBM. A fault plane is buried in the full space.
(a) Geometry setup. (b) Dimensions and initial damage distribution of fault plane. (c)
Initial damage distribution of high damage zone.

Figure 3: Parameter table for the buried fault case.
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Figure 4: Selected Time snapshots of breakage evolution for two cases in DynamicCDBM.
(1) 3D Contours of breakage B = 1 within the damage zone. (2) Breakage evolution of
XZ plane cut. The breakage within nucleation region forms its angle approximately
align with maximum principal stress direction, but later its motion is restricted by the
damage profile. Spontaneous propagation along with the edge of high damage region.
(3) Breakage evolution of XZ planes cut, at z=-75m and z=75m. Pulse like propagation
shape along depth.

3 Theory and MOOSE Implementation

3.1 Free Energy

Ψ(T, ϵeij , α,∇α,B) = (1−B)ΨS(T, ϵ
e
ij , α,∇α) +BΨB(T, ϵ

e
ij) (1)

Where the total free energy Ψ is in general a function of temperature T , elastic strain ϵe,
damage variable ∇α and its spatial gradient ∇α, breakage variable B, and it is partitioned into
elastic ΨS and granular ΨB components.

In terms of ΨS and ΨB, we consider small deformation:

ΨS = ρ(
1

2
λ)I21 + µI2 − γI1

√
I2) (2)

ΨB = ρ(aoI1 + a1I1
√

I2 + a2I
2
1 + a3

I31√
I2

) (3)

Where the first and second strain invariant I1 I2 and strain invariant ratio ξ are defined as
follows:

I1 = tr(ϵe) I2 = tr((ϵe)2) ξ =
I1√
I2

(4)
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3.2 Equation for the stress

The stress Se is derived by taking derivatives of equation (1) with respect to the elastic strain ϵe,
the expression is given below:

Sij =
∂Ψ

∂ϵeij
= (1−B)

∂ΨS

∂ϵeij
+B

∂ΨB

∂ϵeij
= (1−B)σS +BσB

= (1−B)[(λ− γ

ξ
)I1δij + (2µ− γξ)ϵeij ]

+ (B)[(2a2 +
a1
ξ

+ 3a3ξ)I1δij + (2a0 + a1ξ − a3ξ
3)ϵeij ]

(5)

where the modulus are function of damage variable α:

µ = µo + αξoγr (6)

γ = αγr (7)

Equation (5) (6) (7) is implemented in ComputeDamageBreakageStress3D::computeQpStress().
See //Represent sigma (solid(s) + granular(b)).

3.2.1 Determination of coefficients of granular phase

Please refer to (Lyakhovsky and Ben-Zion, 2014) for more details, we have four equations four
unknowns:

2a2 + a1/ξ1 + 3a3ξ1 = 0

2a0 + a1ξ1 − a3ξ
3
1 = 0

a0 = χµ(α = αcr|ξ = 0)

a0 + a1ξd + a2ξ
2
d + a3ξ

3
d = (µo + ξoγr)− γrξd +

λo

2
ξ2d

(8)

Solve the equations, we have analytical solution for a0, a1, a2, a3:

a0 = χµ∗

a1 =
−2χµ∗ξ31 + 6χµ∗ξ1ξ

2
d − 4χµ∗ξ3d − 2γrξ

3
1ξd + 2γrξ

3
1ξo + λoξ

3
1ξ

2
d + 2µoξ

3
1

2ξ31ξd − 4ξ21ξ
2
d + 2ξ1ξ3d

a2 =
2χµ∗ξ31 − 3χµ∗ξ21ξd + χµ∗ξ3d + 2γrξ

3
1ξd − 2γrξ

3
1ξo − λoξ

3
1ξ

2
d − 2µoξ

3
1

ξ41ξd − 2ξ31ξ
2
d + ξ21ξ

3
d

a3 =
−2χµ∗ξ21 + 4χµ∗ξ1ξd − 2χµ∗ξ2d − 2γrξ

2
1ξd + 2γrξ

2
1ξo + λoξ

2
1ξ

2
d + 2µoξ

2
1

2ξ41ξd − 4ξ31ξ
2
d + 2ξ21ξ

3
d

(9)

Where µ∗ = µ(α = αcr|ξ = 0).
Equation (9) is implemented in ComputeDamageBreakageStress3D::computecoefficients().

3.3 Flow rule

We express the rate of plastic part of deformation rate tensor Dp as follows:

∂ϵpij
∂t

= CgB
m1τm2

ij (10)

Where τij is the deviatroic stress:

τij = σij −
1

3
σmmδij (11)

Equation (10) is implemented in ComputeDamageBreakageStress3D::computeQpStress(). See
/* compute strain */
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3.4 Evolution equation

The evolution equations for damage variable α and breakage variable B are given as follows:

∂α

∂t

{
(1−B)[CdI2(ξ − ξo) +D∇2α], ξ ≥ ξo

(1−B)[C1exp(
α
C2

)I2(ξ − ξo) +D∇2α], ξ < ξo
(12)

∂B

∂t

{
CBP (α)(1−B)I2(ξ − ξd), ξ ≥ ξd

CBHI2(ξ − ξd), ξ < ξd
(13)

Equation (12) (13) is implemented in ComputeDamageBreakageStress3D::computeQpStress().
See /* compute alpha and B parameters */

3.4.1 Critical points for phase transition

3.4.2 Critical damage αcr

The continuum damage-breakage model assumes the phase transition takes place when the elas-
tic energy loss its convexity, that is one or more eigenvalues of its Hessian matrix can’t maintain
positive.

Figure 5: Hessian matrix for solid phase, figure from (Lyakhovsky et al., 2011)

The conditions for positive eigenvalues are (also obtained from (Lyakhovsky et al., 2011):

(2µ− γξ)2 + (2µ− γξ)(3λ− γξ) + (λγξ − γ2)(3− ξ2) > 0

(2µ− γξ) > 0
(14)

If we set the first condition equals to zero, it corresponds to [15a], setting the second condition
equals to zero is related to [15b] in Figure 6. From equation (14), we obtain the analytical solution
for critical damage variable αcr as follows:


αcr = 1, ξ < ξo

αcr =
λξ3−6λξo+6µoξ−8µoξo±

√
λ2ξ6−12λ2ξ3ξo+36λ2ξ2o+12λµoξ4−16λµoξ3ξo−72λµoξ2+72λµoξξo+72λµo−12µ2

oξ
2+48µ2

o

2γr(3ξ2−6ξξo+4ξ2o−3)

ξ > ξo and ξ < ξ1

αcr = 2µo

γr(ξ−2ξo)
ξ > ξ1

(15)
Equation (12) (13) is implemented in ComputeDamageBreakageStress3D::alphacr_root1()

and alphacr_root2().
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3.4.3 Critical strain invariant ratio ξ1

As shown in Figure 6, point b is a critical point where three phases (solid, granular, pseudo-gas)
coexist. The conditions for eigenvalues of the Hessian matrix vanishes lead to the simplifications
of the conditions given in equation 14:

λ− γ

ξ
= 0

2µ− γξ = 0
(16)

Using the equations of shear modulus and damage modulus given above (equations (6) (7)),
we obtain analytical solution for ξ1, which is the strain invariant ratio at this critical point where
three phases coexist:

ξ1 = ξo +

√
ξ2o + 2

µo

λo
(17)

Equation (12) (13) is implemented in ComputeDamageBreakageStress3D::computeQpStress().
See //compute xi_1.

Figure 6: Phase diagram: damage variable α vs strain invariant ratio ξ

3.4.4 Critical damage modulus γr

The critical (or maximum) damage modulus γr represents the damage modulus at maximum dam-
age variable α = 1 and onset of damage accumulation strain state ξ = ξ0. From first equation (14)
and Figure 6 point a, we plug in α = 1 and ξ = ξ0 into the first equation and solve for γr:

γr =
−ξo

(
−λξ2o + 6λ+ 2µ0

)
−
√

(λξ2o + 2µ0) (λξ4o − 12λξ2o + 36λ− 6µ0ξ2o + 24µ0)

2 (ξ2o − 3)
(18)

Equation (12) (13) is implemented in ComputeDamageBreakageStress3D::computeQpStress().
See computegammar().
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